与传统成像系统相比,偏振成像系统通过探测目标物在不同状态下的明显偏振差异,提高对目标物的探测和识别能力,因而被广泛应用于复杂环境或有伪装物的目标探测。特别是短波红外谱范围的信息探测可以提供人眼所不能看见的分辨率和细节,是目前军事和民用领域的重点研究方向之一。

传统偏振成像系统

传统的偏振成像方法与光谱成像相似,需要采集3个或4个图像来表征一个场景的偏振状态。由于分时获取多帧偏振成像中场景的任何运动都会导致伪影,可能掩盖真正的两极分化特征,因而存在时间图像配准问题,必须同时获取图像或尽快获取以尽量减少平台或场景运动引起的伪影。减小伪影的方法是同时获取多个图像,但空间配准就变成了需要解决的问题。由于分离引起的畸变光路,多重空间配准需要校正机械错位以及光学“错位”,故而变得复杂。虽然简单的测量极化信息的方法是使用单独的相机以及配备的独立光学元件来实现图像的共视,但是这种策略很难执行得当,因此许多新的集成技术逐渐被研发和使用。

1.分时偏振成像系统

一种常用的偏振成像方法,如下图所示,在摄像头系统前安装旋转偏振元件。通过旋转偏振元件可以调制从场景入射到焦平面的偏振光,并通过数据约简矩阵技术重塑斯托克斯图像,可用于产生线性极化、圆极化度或其他派生量(例如方向或椭圆率)的图像。美国Polaris Sensor Technologies公司就利用旋转延迟器将红外光的偏振信息传送到偏振器传感头和液氮冷却的MTC焦平面阵列上,用于探测水面游泳运动员。使用线性偏振对比度探测水上的目标物,然后根据辐射对比度即可对目标物进行分类。

Lavigne等人则研发了一套如下图所示的四波段偏振成像系统,对长波红外、中波红外、短波红外以及可见光进行探测。通过在四波段成像系统前面安装同步旋转的偏振片,按特定时间间隔可依次获得0°、45°、90°和135°的偏振图像。这种系统可以实现校准、数据采集和数据处理的全面自动化,整个图像的捕获过程只需不到2.5min。

这种方法虽然系统设计和数据分析方面都非常简单,但存在一些明显的缺点。大多数情况下,旋转元件已经是一个偏振器,因而只能检测线性偏振态。此外,场景和测试平台必须是静止的,以避免引入帧间运动。为了保证图像的质量,旋转速度要么太慢而无法实现更高的帧速率,要么偏光片需要跟着场景逐步移动来获取运动间的图像。即使最近在连续旋转偏振器方面已取得一定成功,在采集期间如果有较多场景传感器移动时,仍会因为旋转元件引起的光束漂移而产生伪影。如果旋转中存在楔子或者元件有震颤,也会导致光束漂移。

因此,基于声光可调谐滤光片(AOTF)的偏振成像仪得到大力发展。AOTF利用声光衍射原理制成滤光片,既是分光器件又是偏振器件,可同时获得两个偏振方向互相垂直的衍射图像和一个未发生衍射的图像。美国陆军研究实验室(ARL)设计了主要由AOTF和液晶相位可变延迟器(LCVR)组合而成的偏振光谱成像系统,如下图所示。

通过AOTF前放置的LCVR对每个波长产生两个相位延迟,即可以用一个相机对两个正交偏振的衍射光束进行成像。它不仅覆盖了0.4~11.5μm的宽光谱范围,而且是电子控制,可实现更快的响应和更好的时效性。随后,该小组对基于AOTF的成像偏振光谱系统(ISP)进行了更深入地研究,研制出了宽波段、小型化、稳定的、可进行编程的ISP型号,并研制了基于两个LCVR和AOTF的全Stokes ISP,如下图所示。

2.分振幅偏振成像系统

分振幅偏振成像系统最初由Garlick等人提出并建造的双通道系统,逐渐发展成为下图所示的全斯托克振幅旋光仪,其第4个相机位于四分之一波片后方的分光镜之上。这样的旋光仪一般由4个独立的焦平面阵列组成。4个独立的相机分别与一系列偏振分束器、减速器和中继透镜组成一条光路,以实现偏振成像。刚性机械支架用于将摄像头支撑在面向4个光路的出口位置。偏振分束光路用于实现直线和圆形偏振,而4个摄像机可同时捕捉4幅图像,以计算完整斯托克斯图像,并消除由采集过程中场景变化引发的虚假偏振效应。

这里分束块包括3个分光镜(一个80/20分光镜和两个50/50分光镜)、一个四分之一波片和一个半波片减速器。分束块的每条路径可用于分析入射极化的不同方面,从而用于测量完整的斯托克斯矢量。这样的设计可以有效地利用偏振光而几乎无光吸收或反射的损耗。此外,被分析的偏振态尽可能接近正交,并均匀地分布在各个可能的入射极化上。但是,这种系统一般尺寸都过大,且需要严格的系统校准,以达到机械和光学对准所需的要求。此外,中继镜头的位置偏差也可能导致4个通道中的每个通道的畸变,因而需要进行后期处理来共同注册这4幅图像。只有在需要完整的空间分辨率,而大小和成本不是问题时,这种方法是合适的选择。

3.分孔径偏振成像系统

Polaris Sensor Technologies公司研发了一套如下图(a)所示的中波红外分孔径偏振成像系统。这样的系统一般由一个焦平面阵列(FPA)和一套成像系统组成,可以将多个图像投影到一个焦平面上。一个标准相机物镜用于在孔径上形成场景图像,准直光学系统再将该图像均匀投射到几个微型透镜阵列上。在每个微型透镜阵列后面放置不同的偏振器,就可以在焦平面阵列上形成不同偏振态图像,如下图(b)所示。

对于这种偏振仪设计,不仅可以使用0°、45°、90°和135°方向上的线性偏振器,还可以使用其他偏振元件来测量圆偏振状态。精准的定位既可以同时获取所有极化数据,又可以确保所有极化通道是共视的。因为光路较短,一旦光学元件被固定后,光路的对准相对于分振幅旋光仪也会更稳定。因此,该系统拥有结构简单、数据处理速度快等优点,而且在被动传感器(宽光谱照明)和有源单色传感器中都可以应用。其主要缺点是空间分辨率的损失(每个线性尺寸的系数为2)以及附加成像光学元件的体积和重量。此外,匹配传输、变迹、放大和通道之间的失真等方面的问题都不容忽视。还应该指出的是,由于连续光源的相干散射和干涉,这种策略更难在连续光源照明的情况下使用。

新型微纳偏振成像系统

短波红外成像技术也促进了短波红外偏振成像技术的发展,从原理上讲,短波红外焦平面探测器配置相应的偏振光学系统,可以实现上述分时、分孔径和分振幅的偏振成像模式。但是,由于目前InGaAs短波红外焦平面探测器的灵敏度有限,分焦平面偏振模式或一些新型短波红外偏振探测器的模式更吸引人们的关注。

1.分焦平面偏振成像系统

由于焦平面阵列(FPA)技术的最新进展,可将微光偏振元件直接集成在焦平面阵列上,从而实现下图所示的分焦平面偏振成像系统,在每个图像帧里都能获取所需的极化数据。Nordin等人将包含偏振滤波器阵列的衍射光学元件(DOE)集成在InSb焦平面上,实现了全斯托克斯偏振成像系统。该DOE由256×256的极化滤波器单元阵列组成,每个单元由一个基于线栅偏振片的2×2极化滤波器阵列组成,分别用于水平、垂直、45°和顺时针圆偏振光。下图(b)则展示了每个单元中两个偏振滤波器的横截面图。基于DOE的偏振滤波器阵列随后集成在512×512像素的FPA上。因为每一个极化滤波单元用于测量最终图像中单个像素的偏振信息,该DOE/FPA系统最终生成的图像将含有256×256个像素。

该系统具有显著优势,场景中每个像素的所有偏振测量都是同时进行的,用于斯托克斯矢量估计的测量值都是由同一视场的相邻像素点组建。因此,分焦平面偏振成像系统得到了广泛的关注和研究,已经可以实现光谱多个波段的成像,包括可见光、短波红外和长波红外。大多数焦平面阵列偏振系统仅针对线性极化,但全斯托克斯的系统设计也在逐步发展中。这种系统的缺点是,为了计算焦平面阵列上每个像素点的斯托克斯矢量,须对图像进行2×2(或更大)的卷积,因此会在空间分辨率和偏振信息之间进行权衡。另外,相邻像素的瞬时视野(IFOV)原则上不重叠,因而该系统在斯托克斯矢量计算中容易存在像素到像素的配准误差。通过使光斑扩展散焦和后续的数据处理,误差可得到部分缓解。

目前大部分研究都使用金属线栅实现周期性微偏振片阵列。美国圣路易斯华盛顿大学Gruev等通过将4个不同偏振方向的铝纳米线栅滤波器阵列集成到CCD成像阵列上,制备了一种能够记录光学图像的成像传感器,获得了45dB的信噪比,并以45帧/s的速度捕获可见光谱范围的偏振图像。耶拿大学Siefke等研制了基于二氧化钛线栅结构的偏振系统,通过使用自对准双图案化技术制备周期较小、纵横比较大的光栅,可用于190~280nm的远紫外光谱偏振探测。但可以看到的是,虽然该系统获得了较高的偏振消光比,但透射率只有10~16%,意味着大部分光都已损耗而没有被探测到。

美国哈佛大学Rubin等在Science杂志上提出了基于TiO₂超表面光栅的紧凑型全斯托克斯偏振相机。在没有传统的偏振光学和运动部件支持下,仅通过设计和优化下图所示的绝缘体超表面纳米结构,即可集成到相机上获得可见光谱范围的全斯托克斯偏振态测量。法国蔚蓝海岸大学Song等通过设计GaN超表面光栅成功实现了复杂的宽带波前整形,包括光束偏转器和白光全息图。但这些设计需要大量的模拟实验,光栅和相机的集成工艺和后期的数据处理也都很有挑战。另外,超表面光栅的光损耗也不容忽视。因此,虽然已有的焦平面阵列旋光仪解决了其他旋光仪体积大、校准要求高、响应速度慢的问题,但将微光偏振元件直接集成在焦平面阵列上任然存在很多技术上的难点,以及各种光学损耗。

2.基于半导体微纳结构的偏振成像系统

近年来,基于微纳结构的新型光电探测器已引起国际上广泛的关注,比如纳米线、纳米管、纳米片和二维材料。这些器件采用独特的几何结构和物理特性,具有优异的光学和电学性能、量子效应以及增强光、生物或化学敏感度。特别是,III-V族半导体纳米线更是具有直接和宽光谱的可调谐性带隙、高吸收系数和载流子迁移率,以及形成异质结构的灵活性,使其成为光电探测的优秀候选者。相比于传统探测器,垂直排列的纳米线阵列具有低反射和强宽带吸收,可用作有源和减反射层,将光更有效地耦合到高折射率半导体中。也可减少材料使用量,以降低成本,同时生产更多功能性设备。哈佛大学Park等提出如下图所示的半导体纳米线偏振探测器,在无需偏振滤镜的情况下,利用硅纳米线形状可调制光吸收的特点,将光信号转化成不同偏振态对应的光电流,实现偏振探测。这种技术可以减少光损耗,缩小器件体积,而且纳米结构的设计可有效提高相机的光吸收效率。但基于椭圆形纳米线形状的偏振器消光比较低,目前的设计也只能检测线偏振态。硅相对于III-V族半导体的光电转化效率也有待提高,且只应用于可见光和近红外波段。

澳大利亚国立大学Li等制备了基于InAs纳米片阵列的室温短波宽光谱红外探测器,如下图所示。通过与中南大学合作得到的仿真结果看来,纳米片阵列沿长轴方向有较高的光吸收率,而在其垂直的方向几乎无吸收。通过结构优化后,在2~3μm波长范围内,在保证高于67%的吸收率同时,可获得大于50的偏振消光比。因此,该结构极有希望应用于红外宽光谱偏振成像,在无需微纳偏振片的情况下,即可实现偏振态探测。

与传统偏振成像系统相比,新型偏振成像系统通过焦平面探测器耦合微纳偏振元件或直接改变探测器表面结构,可实现快速、像素多、体积小、光路简单、光损耗较小的偏振成像。目前,微纳结构加工和器件制备工艺均有待改进,针对短波红外偏振成像的研究尚不足。

转自:机器之瞳

注:文章版权归原作者所有,本文仅供交流学习之用,如涉及版权等问题,请您告知,我们将及时处理。